
Linear Algebra & Geometry
LECTURE 4

Fields



Fields

Definition.
An algebra (𝔽, #,∗) with two binary operations # and ∗ is called a 
field iff

1. 𝔽, # is an Abelian group whose identity element is denoted 𝑒#
2. ∗ is associative and commutative

3. There exists 𝑒∗ ∈ 𝔽 such that for every 𝑎 ∈ 𝔽, 𝑎 ∗ 𝑒∗ = 𝑎

4. For every 𝑝 ∈ 𝔽 ∖ {𝑒#}, there exists 𝑞 ∈ 𝔽 such that 𝑝 ∗ 𝑞 = 𝑒∗
5. ∗ is distributive over #

6. 𝔽 ≥ 2 .

Remark. The axioms of a field are based upon properties of 
addition and multiplication of real numbers. But you must not 
assume that all that is true for real numbers is automatically true in 
every field.



Convention. Often, in order to simplify notation and to facilitate 
the talk we use + to denote the first operation in a field and we say 
things like "p plus q". If that's the case, we also use 0 to denote the 
identity element (similarly, the second operation is often referred to 
as "multiplication"). You must not let this convention cloud your 
perception of fields. What really counts is what is the first and what 
the second operation.

Example.

We know that ℝ,+,⋅ is a field. Is ℝ,⋅, + a field?
If it were, than ℝ,⋅ would be a group and we know it is not. There 
many other reasons here, for example addition would have to be 
distributive over multiplication, etc.



Examples.

1. ℚ,+,⋅ , ℂ,+,⋅ are fields

2. ℤ3,⊕,⊗ is a field (under mod 3 operations), ℤ4,⊕,⊗ , 
under mod 4 operations, is not

3. ℚ( 2), +,⋅ is a field

4. ℤ,+,⋅ is not a field

5. ℝ2, +,⋅ is not a field if + and ⋅ denote componentwise
operations, i.e. 𝑎, 𝑏 + 𝑐, 𝑑 = (𝑎 + 𝑐, 𝑏 + 𝑑) and 

𝑎, 𝑏 ⋅ 𝑐, 𝑑 = (𝑎𝑐, 𝑏𝑑)



Examples ctd.

6. Is (ℝ,∗, #) a field where 𝑥 ∗ 𝑦 = 𝑥 + 𝑦 + 1 and 𝑥#𝑦 = 𝑥𝑦 +
𝑥 + 𝑦?
When in a tight spot, ask yourself the golden question "WTH 
does it mean that (ℝ,∗, #) is a field?" There are a number of
conditions to be checked:
(1) Is (ℝ,∗) an Abelian group? It is clearly an algebra and ∗ is 
obviously commutative. We must verify associativity, the 
existence of "0", i.e. identity element, and invertibility of every 
element. Associativity: 𝑥 ∗ 𝑦 ∗ 𝑧 = 𝑥 ∗ (𝑦 ∗ 𝑧)? 
LHS: 𝑥 + 𝑦 + 1 + 𝑧 + 1 = 𝑥 + 𝑦 + 𝑧 + 2
RHS: 𝑥 + 𝑦 ∗ 𝑧 + 1 = 𝑥 + 𝑦 + 𝑧 + 1 + 1 = 𝑥 + 𝑦 + 𝑧 + 2
What (if anything) is the identity element e for ∗? e must be 
such that for every x, 𝑥 ∗ 𝑒 = 𝑥 + 𝑒 + 1 = 𝑥. This clearly 
means that e = −1. In other words "zero" in this algebra is 
equal to −1.
q is the inverse for p iff 𝑞 ∗ 𝑝 = 𝑒 = −1. 𝑞 ∗ 𝑝 = 𝑞 + 𝑝 + 1
hence, 𝑞 + 𝑝 + 1 must equal −1. Hence, 𝑞 = −𝑝 − 2.



(2) Is # commutative and associative? Commutativity is clear. 
Associativity: 𝑥#𝑦 #𝑧 = 𝑥#(𝑦#𝑧)? 
LHS: 𝑥𝑦 + 𝑥 + 𝑦 #𝑧 = 𝑥𝑦 + 𝑥 + 𝑦 𝑧 + 𝑥𝑦 + 𝑥 + 𝑦 + 𝑧 =
𝑥𝑦𝑧 + 𝑥𝑧 + 𝑦𝑧 + 𝑥𝑦 + 𝑥 + 𝑦 + 𝑧
RHS: 𝑥 𝑦#𝑧 + 𝑥 + 𝑦#𝑧 = 𝑥 𝑦𝑧 + 𝑦 + 𝑧 + 𝑥 + 𝑦𝑧 + 𝑦 +
𝑧 = 𝑥𝑦𝑧 + 𝑥𝑦 + 𝑥𝑧 + 𝑥 + 𝑦𝑧 + 𝑦 + 𝑧. OK
(3) What, if anything, is the identity element f for #? f must be 
such that for every x, 𝑥#𝑓 = 𝑥𝑓 + 𝑥 + 𝑓 = 𝑥. This implies that 
for every x, 𝑥𝑓 + 𝑓 = 𝑓 ⋅ 𝑥 + 1 = 0. Obviously, such an f 
exists, namely f=0. (So "1" is zero).
(4) Invertibility of every x different from "0", i.e. different from 
− 1. This means, given an x find a y such that 𝑥#𝑦 = 𝑥𝑦 + 𝑥 +
𝑦 = 0. Solving this for y one gets 𝑥𝑦 + 𝑦 = −𝑥 and 𝑦 = −

𝑥

𝑥+1
. 

This solution is only good for every x different from −1, which 
is good enough.
(5) I leave checking distributivity (of # over *) for your own 
amusement.



Theorem.
Suppose (𝔽,+,⋅) is a field (we use the convention, + and ⋅ denote 
some abstract operations, not addition and multiplication). Then

1. ∀𝑎 ∈ 𝔽 0 ⋅ 𝑎 = 0 (This is not a joke)

2. ∀𝑎, 𝑏 ∈ 𝔽 [𝑎 ⋅ 𝑏 = 0 ⇔ (𝑎 = 0 ∨ 𝑏 = 0)]

3. 0 ≠ 1 (This is not a joke either, here 0 and 1 are not numbers)

4. ∀𝑎, 𝑏 ∈ 𝔽 −𝑎 ⋅ 𝑏 = −(𝑎 ⋅ 𝑏)

5. ∀𝑎 ∈ 𝔽 ∖ {0} −𝑎 −1 = −(𝑎−1)

Proof.

1. 0 + 0 = 0 because 0 denotes the identity element of +, NOT 
because adding 0 to any number yields that number. We are not 
"adding numbers" here. Hence, 0 + 0 ⋅ 𝑎 = 0 ⋅ 𝑎. Due to 
distributivity, this implies 0 ⋅ 𝑎 + 0 ⋅ 𝑎 = 0 ⋅ 𝑎 = 0 + 0 ⋅ 𝑎 and 
from the cancellation law we get 0 ⋅ 𝑎 = 0.



2. Suppose 𝑎 ≠ 0. Then a has an inverse 𝑎−1 such that 𝑎 ⋅ 𝑎−1 =
1. But then a−1 ⋅ 𝑎 ⋅ 𝑏 = a−1 ⋅ 0, which, by part 1, yields 
b=0.

3. Suppose 0 = 1. Then for every 𝑎 ∈ 𝔽, 𝑎 = 1 ⋅ 𝑎 = 0 ⋅ 𝑎 = 0
(due to part 1.), which means that every element of 𝔽 is equal to 
0 (i.e. 0 is the only element of 𝔽) contrary to the condition 6 of 
the definition of a field. 

4. −𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑏 = −𝑎 + 𝑎 ⋅ 𝑏 = 0 ⋅ 𝑏 = 0

5. We must show that − 𝑎−1 ⋅ −𝑎 = 1. Due to part 4 

− 𝑎−1 ⋅ −𝑎 = − 𝑎−1 ⋅ −𝑎 = − − 𝑎−1 ⋅ 𝑎 =
− −1 = 1 (from 𝑎−1 −1 = 𝑎 in groups; here, − −1 means 
the inverse of the inverse of 1 in the group 𝔽,+ .QED



Theorem.

ℤ𝑛,⊕,⊗ is a field iff n is a prime.
Proof.
Since ℤ𝑛,⊕ is an Abelian group for every n and ⊗ is distributive 
over ⊕ we only need to verify that ℤ𝑛 ∖ {0},⊗ is an Abelian 
group iff n is a prime. 
⇒ Indeed, if n is a composite number then 𝑛 = 𝑝𝑞 for some 𝑝

and 𝑞 from ℤ𝑛 ∖ {0}. But then, 𝑝⊗ 𝑞 = 𝑝𝑞 𝑚𝑜𝑑 𝑛 = 0 ∉ ℤ𝑛 ∖
{0}, which means that ℤ𝑛 ∖ {0},⊗ is not even an algebra let 
alone a group.

(⇐) Recall the following theorem about primes:
𝑛 𝑖𝑠 𝑎 𝑝𝑟𝑖𝑚𝑒 ⇔ ∀𝑝, 𝑞 (𝑛 𝑝𝑞 ⇒ 𝑛 𝑝 ∨ 𝑛|𝑞)

One consequence is that ℤ𝑛 ∖ {0},⊗ is an algebra (if 𝑎, 𝑏 ∈
{1,2,… 𝑛 − 1} then ab is not divisible by n hence, 𝑎 ⊗ 𝑏 ≠ 0). 
The identity is clearly 1. 
We must prove invertibility of every element from ℤ𝑛 ∖ {0}. 



Suppose 𝑘 ∈ ℤ𝑛 ∖ 0 . Consider the set 

{1 ⊗ 𝑘, 2⊗ k,… , n − 1 ⊗ 𝑘}. 

We already know that

1⊗ 𝑘, 2⊗ k,… , n − 1 ⊗ 𝑘 ⊆ ℤ𝑛 ∖ 0 .

We will prove that numbers from {1 ⊗ 𝑘, 2⊗ k,… , n − 1 ⊗ 𝑘}
are pairwise different. If 𝑖 ⊗ 𝑘 = 𝑗 ⊗ k for some i and j from 
{1,2,… , 𝑛 − 1} then 𝑛|(𝑖𝑘 − 𝑗𝑘) i.e., 𝑛| 𝑖 − 𝑗 𝑘. From the theorem 
about primes we obtain that 𝑛|(𝑖 − 𝑗) or 𝑛|𝑘 – impossible since 𝑘 ∈
{1,2,… , 𝑛 − 1}. But 𝑖 − 𝑗 ∈ {− 𝑛 − 2 ,− 𝑛 − 3 ,… , 𝑛 − 3, 𝑛 − 2}
and the only number in this set divisible by n is 0. Hence 𝑖 = 𝑗. Our 
conclusion is that, since 1⊗ 𝑘, 2⊗ k,… , n − 1 ⊗ 𝑘 are n-1 
pairwise different numbers from the n-1 element set {1,2,… , 𝑛 −
1} one of them must be equal to 1, hence, one of 1,2,… , 𝑛 − 1 is 
the inverse for k.  QED 

Fact.
We proved a little more than required, namely, that every 
polynomial of degree 1 over ℤ𝑛 has a root in ℤ𝑛.


